Skip to main content
Physics LibreTexts

11.5ii: Heavy damping- \( \gamma > 2\omega_{0}\)

  • Page ID
    8955
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The motion is given by Equations 11.5.4 and 11.5.6 where, this time, \( k_{1}\) and \( k_{2}\) are each real and negative. For convenience, I am going to write \( \lambda_{1}=-k_{1}\) and \( \lambda_{2}=-k_{2}\). \( \lambda_{1}\) are \( \lambda_{2}\) both real and positive, with \( \lambda_{2}\) > \( \lambda_{1}\) given by

    \[ \lambda_{1}=\frac{1}{2}\gamma-\sqrt{(\frac{1}{2}\gamma)^{2}-\omega_{0}^{2}},\quad \lambda_{2}=\frac{1}{2}\gamma+\sqrt{(\frac{1}{2}\gamma)^{2}-\omega_{0}^{2}} \label{11.5.19}\tag{11.5.19} \]

    The general solution for the displacement as a function of time is

    \[ x=Ae^{-\lambda_{1}t}+Be^{-\lambda_{2}t}. \label{11.5.20}\tag{11.5.20} \]

    The speed is given by

    \[ \dot{x}=-A\lambda_{1}e^{-\lambda_{1}t}-B\lambda_{2}e^{-\lambda_{2}t}. \label{11.5.21}\tag{11.5.21} \]

    The constants \( A\) and \( B\) depend on the initial conditions. Thus:

    \[ x_{0}=A+B \label{11.5.22}\tag{11.5.22} \]

    and

    \[ (\dot{x})_{0}=-(A\lambda_{1}+B\lambda_{2}). \label{11.5.23}\tag{11.5.23} \]

    From these, we obtain

    \[ A=\frac{(\dot{x})_{0}+\lambda_{2}x_{0}}{\lambda_{2}-\lambda_{1}},\qquad B=-[\frac{(\dot{x})_{0}+\lambda_{1}x_{0}}{\lambda_{2}-\lambda_{1}}]. \label{11.5.24}\tag{11.5.24} \]

    Example \(\PageIndex{1}\)

    \( x_{0}\neq0,\quad(\dot{x})_{0}=0.\)

    \[ x=\frac{x_{0}}{\lambda_{2}-\lambda_{1}}(\lambda_{2}e^{-\lambda_{1}t}-\lambda_{1}e^{-\lambda_{2}t}). \label{11.5.25}\tag{11.5.25} \]

    Figure XI.4 shows \( x\quad:\quad t\) for \(x_{0}\) = 1 m, \( \lambda_{1}\) = 1 s-1, \( \lambda_{2}\) = 2 s-1.

    The displacement will fall to half of its initial value at a time given by putting \( \frac{x}{x_{0}}=\frac{1}{2}\) in Equation \( \ref{11.5.25}\). This will in general require a numerical solution. In our example, however, the equation reduces to \( \frac{1}{2}=2e^{-t}-e^{-2t}\) and if we let \( u=e^{-t}\), this becomes \( u^{2}-2u+\frac{1}{2}=0\). The two solutions of this are \( u=1.707107\) or \( 0.292893\). The first of these gives a negative t, so we want the second solution, which corresponds to \( t= 1.228\) seconds.

    The velocity as a function of time is given by

    \[ \dot{x}=-\frac{\lambda_{1}\lambda_{2}x_{0}}{\lambda_{2}-\lambda_{1}}(e^{-\lambda_{1}t}-e^{\lambda_{2}t}). \label{11.5.26a}\tag{11.5.26a} \]

    This is always negative. In figure XI.5, is shown the speed, which is \( |\dot{x}|\) as a function of time, for our numerical example. Those who enjoy differentiating can show that the maximum speed is reached in a time \( -\dot{x}\) and that the maximum speed is \( \frac{\lambda_{1}\lambda_{2}x_{0}}{\lambda_{2}-\lambda_{1}}[(\frac{\lambda_{1}}{\lambda_{2}})^{\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}}-(\frac{\lambda_{1}}{\lambda_{2}})^{\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}}]\). (Are these dimensionally correct?) In our example, the maximum speed, reached at \( t=\ln 2=0.6931\) seconds, is 0.5 m s-1.

    alt

    alt

    Example \(\PageIndex{2}\)

    \( x_{0}=0,\quad (\dot{x})_{0}=V(>0)\).

    In this case it is easy to show that

    \[ x=\frac{V}{\lambda_{2}-\lambda_{1}}(e^{-\lambda_{1}t}-e^{-\lambda_{2}t}). \label{11.5.26b}\tag{11.5.26b} \]

    It is left as an exercise to show that \( x\) reaches a maximum value of \( \frac{V}{\lambda_{2}}(\frac{\lambda_{1}}{\lambda_{2}})^{\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}}\) when \( t=\frac{\ln(\frac{\lambda_{2}}{\lambda_{1}})}{\lambda_{2}-\lambda_{1}}\). Figure XI.6 illustrates Equation \( \ref{11.5.26a}\) for \( \lambda_{1}\) = 1 s-1, \( \lambda_{2}\) = 2 s-1, \( V\) = 5 m s-1. The maximum displacement of 1.25 m is reached when \( t = \ln 2 = 0.6831\) s. It is also left as an exercise to show that equation \( \ref{11.5.26a}\) can be written

    \[ x=\frac{2Ve^{-\frac{1}{2}\lambda t}}{\lambda_{2}-\lambda_{1}}\sinh (\frac{1}{4}\gamma^{2}-\omega_{0}^{2}). \label{11.5.27}\tag{11.5.27} \]

    alt

    Example \(\PageIndex{3}\)

    \( x_{0}\neq 0,\quad(\dot{x})_{0}=-V\).

    This is the really exciting example, because the suspense-filled question is whether the particle will shoot past the origin at some finite time and then fall back to the origin; or whether it will merely tamely fall down asymptotically to the origin without ever crossing it. The tension will be almost unbearable as we find out. In fact, I cannot wait; I am going to plot \( x\) versus \( t\) in figure XI.7 for \( \lambda_{1}\) = 1 s-1, \( \lambda_{2}\) = 2 s -1, \( x_{0}\) = 1 m, and three different values of \( V\), namely 1, 2 and 3 m s-1.

    alt

    We see that if \( V\) = 3 m s-1 the particle overshoots the origin after about 0.7 seconds. If \( V\) = 1 m s-1, it does not look as though it will ever reach the origin. And if \( V\) = 2 m s-1, I'm not sure. Let's see what we can do. We can find out when it crosses the origin by putting \( x\)= 0 in Equation \( \ref{11.5.20}\), where \( A\) and \( B\) are found from Equations \( \ref{11.5.24}\) with \( (\dot{x})_{0}=-V\). This gives, for the time when it crosses the origin,

    \[ t=\frac{1}{\lambda_{2}-\lambda_{1}}\ln(\frac{V-\lambda_{1}x_{0}}{V-\lambda_{2}x_{0}}). \label{11.5.28}\tag{11.5.28} \]

    Since \( \lambda_{2} > \lambda_{1}\), this implies that the particle will overshoot the origin if \( V > \lambda_{2}x_{0}\), and this in turn implies that, for a given \( V\), it will overshoot only if

    \[ \gamma < \frac{\frac{V^{2}}{x_{0}^{2}}+\omega_{0}^{2}}{\frac{V}{x_{0}}}. \label{11.5.29}\tag{11.5.29} \]

    For our example, \( \lambda_{2}x_{0}\)= 2 m s-1, so that it just fails to overshoot the origin if \( V\)= 2 m s-1. For \( V\) = 3 m s-1, it crosses the origin at \(t=\ln 2=0.6931\) s. In order to find out how far past the origin it goes, and when, we can do this just as in

    I make it that it reaches its maximum negative displacement of -0.125 m at \( t = \ln 4 = 1.386\) s.


    This page titled 11.5ii: Heavy damping- \( \gamma > 2\omega_{0}\) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.